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Abstract. The renormalisation group method of Kadanoff is applied to the spin-? Ising 
model in two dimensions using a transformation applicable to both the square and 
triangular lattices. Two types of cluster are studied for the triangular lattice. The first 
cluster yields a new fixed point but the results for the critical temperature and critical 
exponents are in poor agreement with the known exact values. The second cluster maps 
directly onto the fixed point found by Kadanoff for the square lattice yielding excellent 
values for both the critical exponents and ihe critical temperature. 

Variational approximations to real space renormalisation group transformations were 
first introduced by Kadanoff (1975) as a method of selecting a ‘best’ transformation 
from a class of transformations obtained within a specified approximation scheme. 
Kadanoff (1975) and Kadanoff et al (1976) obtained remarkably accurate estimates 
for the critical exponents of Ising systems on d-dimensional hypercubic lattices (d = 2, 
3, 4) from a simple lower bound approximation to the exact free energy. More 
recently, the Kadanoff lower bound renormalisation transformation (LBRT) has also 
been applied to more complex systems (Burkhardt 1976b, Burkhardt et al 1976, 
Dasgupta 1977, Burkhardt and Eisenriegler 1977, den Nijs and Knops 1977). In 
almost all cases, the approximation yielded results which compared very favourably 
with those obtained by more conventional methods. The reasons for this success are, 
however, not very clear. 

The criterion proposed by Kadanoff (1975) to determine the ‘best’ fixed point out 
of the set allowed by the approximate recursion relations has been questioned by 
Knops (1977) (see also Barber 1977). In the case of the Ising model on a square 
lattice, both Burkhardt (1976a) and Knops (1977) showed that the fixed point found 
by Kadanoff (1975) possesses an additional relevant eigenvalue and is approached 
only within a restricted subspace of coupling constants. This subspace does not include 
the conventional near-neighbour Ising model on a square lattice unless a decimation 
transformation (Kadanoff and Houghton 1975) is first performed. There is an addi- 
tional fixed point which does have the correct stability characteristics and can be 
reached from a starting Hamiltonian with only nearest-neighbour interactions, but the 
critical exponents associated with the new fixed point are not as accurate as those at 
the original point found by Kadanoff. 

There is also evidence from Plischke and Austen (1976) which suggests that the 
Kadanoff approximation is not nearly so successful when applied to other two- 
dimensional lattices such as a triangular lattice. However the transformation used by 
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these authors in this case could also be interpreted as describing a hypercubic lattice in 
d = 1-585 dimensions since the parameter z = 2d is equal to 3 (see for example Katz et 
a1 1977). The results that Plischke and Austen obtain are not unreasonable for this 
lower dimensionality. In view of this alternate interpretation we shall now describe a 
LBRT which can be used to investigate both the square and the triangular lattices in 
two dimensions. 

The Hamiltonian of the system is taken to have the following form: 

-@H = 1 (K(SiS2+&S3+S&4+S4S1)+2LlS1S3+ ~ L ~ S ~ S ~ + K ~ S I S ~ S ~ S ~ )  (1) 
squares 

where the sum is over all elementary squares of a square lattice and the S are arranged 
as shown in figure 1. With the form of the Hamiltonian in equation (1) we may 
consider the following cases: ( a )  the choice K > 0 and L1 = L2 = K4 = 0 describes the 
ferromagnetic Ising model on a square lattice with nearest-neighbour interaction 2K; 
(b) the choice K = L1 > 0 and L2 = K4 = 0 describes the same model on a lattice which 
is topologically equivalent to a triangular lattice as shown in figure 2(a); and (c) finally 
the choice K = L2 > 0 and L1= K4 = 0 for even rows alternating with the choice in 
case (b) for odd rows also describes a triangular lattice as shown in figure 2(b). Hence 
different initial Hamiltonians permit us to describe both the square and triangular 
lattices within the same LBRT. In all cases the parameter z = 2d is equal to four 
corresponding to a dimensionality d = 2. 

Figure 1. Basic cluster used for LBRT. 

Fig" 2. (a) Initial cluster for triangular lattice described by case (6); ( 6 )  initial cluster for 
triangular lattice described by case (c). 
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Kadanoff's original LBRT for the square lattice was restricted to the subspace 
K = 2L1= 2L2. Burkhardt ( 1 9 7 6 ~ )  and Knops (1977) considered the larger subspace 
K # 2L1 = 2L2 and found that the Kadanoff fixed point became unstable. For the 
triangular lattice described in case (b) above we have considered an even larger 
subspace in which K # 2L1 # 2L2 and we find that the Burkhardt fixed point has an 
additional relevant eigenvalue corresponding to perturbations in L1 - L2 indicating 
that it does not describe the critical behaviour of the triangular lattice. We have found 
an additional fixed point which is stable. The coordinates of all three fixed points are 
given in table 1 along with the eigenvalues of the linearised recursion relations at the 
fixed point. The leading thermal eigenvalue at this new critical fixed point is A = 
1.8976 which yields v = 1.082 and a = -0.164. The critical surface in the space of 
the parameters (K, L1, Lz, K4) intersects the line K = L1, L2 = K4 = 0 at K, = 0.167 as 
compared with the exact value of K ,  = 0,137. The leading magnetic eigenvalue is 
A Y  = 3.7642 which yields S = 21.819. These results for the triangular lattice are not 
as good as those for the square lattice but are an improvement on those reported by 
Plischke and Austen. 

Table 1. Critical fixed points of LBRT. A' and A o  are the eigenvalues corresponding to 
operators of even and odd symmetry respectively. 

Fixed point K* 2L: 2L: K2 P* A e  A a  
~~ ~ ~~~~ 

Kadanoff 0.1397 0,1397 0.1397 -0.0069 0.766 2.0012 
1.1151 
1.1146 
0,5056 

Burkhardt 0,1587 0,1077 0.1077 -0.0075 0.761 2,0245 
1.1010 
0.8871 
0.4480 

Present calculation 0.1622 0.2744 0.0500 -0.0347 0.754 1.8976 
(case ( b ) )  0.7625 

0.6437 
0.2683 

3.6688 
1.7817 
0.9582 
0.7403 

3.6750 
1,4591 
0.9222 
0.5415 

3.7642 
1.7291 
0,6737 
0.3542 

In case (c) above, the first iteration of the LBRT maps directly into the subspace 
K = 2L1 = 2L2 studied by Kadanoff (1975) and the critical properties are described by 
the fixed point found by Kadanoff. The critical exponents are a = 0.002 and S = 
15.04 with the critical value of K given by K, = 0.139 in excellent agreement with the 
exact values. 

In summary, we have presented a LBRT for the Ising model in two dimensions 
which can be used to describe both the square and triangular lattices. The cluster 
considered in case (c) above gives excellent results for both the critical exponents and 
critical temperature of the triangular lattice and demonstrates the universal critical 
behaviour exhibited by these two types of lattice. 

I would like to thank Dr T Burkhardt for many useful discussions and for the use of his 
variational computer programs. 
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